论文指导

抗肿瘤抗生素与癌症靶向治疗研究

  摘要:用于构建抗体靶向药物单克隆抗体对相关抗原有高度特异性,在研制靶向药物方面有巨大的潜力。近年来,治疗肿瘤的抗体药物研究开发取得了突破性进展。Rituxan是1997年第一个获美国FDA批准上市的抗肿瘤抗体药物,用于治疗B细胞性非霍奇金淋巴瘤。

  关键词: 抗肿瘤抗生素,卡里奇霉素,力达霉素,抗体靶向药物

  由于分子生物学的研究进展,不断发现和确定与肿瘤治疗相关的分子靶点,抗肿瘤靶向药物的研究开发受到广泛关注。目前研究的抗肿瘤靶向药物大致可分为两类,一是针对特定靶点筛选与研制的小分子药物,二是抗体靶向药物。抗肿瘤抗生素是由微生物产生的具有抗肿瘤活性的化学物质。微生物的代谢产物极其复杂多样,是发现与研制抗肿瘤靶向药物的丰富资源。近年来通过利用特定的模型和方法进行筛选或对已知的化合物进行检测,已发现与确定多种对特定分子靶点显示高度活性的抗肿瘤抗生素。在抗体靶向药物研究方面,抗肿瘤抗生素可用作“弹头”药物,与抗体及其片段进行连接,制备免疫偶联物或融合蛋白[1,2]。

  1 作用于特定靶点的抗肿瘤抗生素

  微生物产生的活性物质不仅在化学结构上而且在生物活性上都显示高度的多样性。利用各种筛选模型进行检测,不仅可以发现新的化合物,也可以发现某些已知化合物具有未曾报道过的生物活性。

  1.1 作用于DNA模板作用于DNA模板的抗肿瘤抗生素包括可引起DNA断裂以及可嵌入DNA模板的活性物质。目前临床使用的抗肿瘤抗生素基本上属于此类物质。不少处于研究阶段抗肿瘤抗生素也属此类物质。研究表明,含烯二炔发色团的力达霉素(LDM,C1027)对肿瘤细胞有极强的杀伤作用, 按IC50进行比较, LDM比丝裂霉素、阿霉素等强10000倍以上。LDM可导致细胞的DNA双链断裂,其作用点显示核苷酸序列特异性。LDM可诱导肿瘤细胞凋亡和细胞裂亡[3~5]。据报道,一种作用于DNA的化合物可以增强另一种作用于DNA化合物的活性,如distamycin A可增强C1027的诱导细胞凋亡作用[6]。Hedamycin是对富含GC核苷酸序列的DNA显示选择性结合的抗肿瘤抗生素。据报道hedamycin可在基因转录水平抑制抗凋亡蛋白survivin的表达,从而影响肿瘤细胞的生存[7]。Mithramycin可激活p53蛋白并可增强TNF的细胞毒作用[8]。

  1.2 抑制血管生成肿瘤生长依赖于相应的血管生成。抑制血管生成是备受关注的研制抗癌药物的新途径。已报道一系列的抗生素包括fumagillin及其衍生物TNP470具有抗血管生成的活性,可抑制内皮细胞增殖和游动,在体内可抑制血管生成[9]。力达霉素(C1027)有强烈的抑制血管生成作用,在低剂量(001μg/鸡胚)即可抑制鸡胚尿囊膜的血管生成,并可阻断bFGF与受体蛋白结合。力达霉素可抑制内皮细胞增殖并诱导细胞凋亡[10]。又据报道,borrelidin可抑制内皮细胞增殖、诱导内皮细胞凋亡并使已形成的毛细血管关闭。其作用机制涉及两方面,即抑制苏氨酰tRNA合成酶和激活caspase3和caspase8[11]。Gliotoxin可抑制人脐静脉内皮细胞的游动,其作用比对癌细胞(HeLa,MCF7)游动的抑制强10倍[12]。核苷类抗生素sangivamycin对内皮细胞有选择性抑制增殖作用[13]。新生霉素(novobiocin)显示抑制血管生成活性并可增强长春新碱的抗肿瘤作用[14]。

  1.3 干扰细胞周期由链霉菌产生的trichostatin A(TSA)是组蛋白脱乙酰酶(HDAC)的特异性抑制剂,TSA处理癌细胞可致组蛋白过度乙酰化与p21过表达,抑制Cdk2激酶活性,导致G1期阻滞,抑制细胞增殖。由放线菌产生的boromycin可以消除博来霉素所诱发的G2关卡,如与博来霉素合用则可使G2期细胞显著减少而subG1期细胞增加。在动物实验,boromycin可增强博来霉素的抗肿瘤作用[15]。

  1.4 作用于热休克蛋白90热休克蛋白90(heat shock protein 90,Hsp90)是细胞内最活跃的分子伴侣(molecular chaperone),许多信号传导蛋白的正常功能均依赖于Hsp90,它在肿瘤细胞繁殖和存活中可能起重要作用。据报道,geldanamycin特异性结合并抑制Hsp90的功能,促进多种癌基因产物和周期调控蛋白的降解而显示多种生物活性。目前,geldanamycin的衍生物17AAG已进入临床I期研究。我们的研究表明,geldanamycin与丝裂霉素、顺铂等化疗药物有协同作用[16]。又据报道,17AAG与奥沙利铂联合可以增强对结肠癌细胞的杀伤作用,这与17AAG抑制NFkappaB pathway有关。17AAG也可增强紫杉醇的抗肿瘤作用,其机制是17AAG抑制Akt激酶的表达和激活,提高肿瘤细胞对紫杉醇诱导凋亡的敏感性。17AAG与imatinib对白血病细胞显示协同作用,可使对imatinib耐药的白血病细胞恢复敏感性[17]。

  1.5 作用于靶点mTOR靶点mTOR(mammalian target of rapamycin)是(PI3K)/Akt信号转导通路下游的效应分子,可介导细胞增殖与细胞凋亡。rapamycin及其同系物CCI779、RAD 001和AP23573等显示对mTOR有高度特异性的抑制作用,阻断相关的信号转导,干扰细胞周期,出现G1期阻滞。在转基因小鼠模型研究表明,rapamycin对ErbB2依赖性乳腺癌的生长有显著抑制作用[18]。

  2 抗肿瘤抗生素

  自1998年以来,先后获批准用于治疗肿瘤的抗体药物有Herceptin、Mylotarg、Campath1H、Zevalin、Bexxer、Erbitux和Avastin等。当前,抗体药物的研究开发已成为生物技术药物领域的热点。目前处于临床前期、临床Ⅰ期与临床Ⅱ期研究开发的各类生物技术药物中,抗体药物的品种数量位居前列[19,20]。

  2.1 抗体药物的构成从分子构成来看,抗体药物可分3类:(1)抗体,亦称非偶联抗体或裸抗体;(2)抗体偶联物,或称免疫偶联物,由抗体或抗体片段与“弹头”物质连接而成。可用作“弹头”的物质有放射性核素、化疗药物与毒素。这些“弹头”物质与抗体连接,分别构成放射免疫偶联物、化学免疫偶联物与免疫毒素;(3)融合蛋白,由抗体片段和活性蛋白两个部分构成。抗体药物具有两种功能,一是与靶分子特异性结合,二是杀伤肿瘤细胞,其作用主要通过依赖补体的细胞毒性(CDC)和依赖抗体的细胞介导的细胞毒性(ADCC)两种免疫机制实现。为了加强抗体药物的杀伤肿瘤细胞活性,阿霉素、柔红霉素、博来霉素、新制癌菌素、丝裂霉素、平阳霉素、博安霉素、卡里奇霉素、力达霉素以及格尔德霉素等均曾与抗体偶联,制备抗肿瘤抗体药物。

  2.2 抗体药物的小型化与高效化抗体及其偶联物均为大分子物质。以IgG型抗体为例,其分子量约为150kDa;与药物连接制成的化学免疫偶联物的分子量更大。庞大的抗体药物分子难以通过毛细管内皮层和细胞外间隙到达实体瘤深部的肿瘤细胞。因此,研制小型化抗体药物对提高疗效有重要意义。另一方面,由于注入体内的抗体药物实际到达肿瘤细胞的数量有限,为取得良好效果,抗体药物需要高效化,仅有微量到达靶部位即可杀伤肿瘤细胞。研制小型化与高效化抗体药物需要高效“弹头”药物。常用的化疗药物如阿霉素、丝裂霉素、甲氨蝶呤等虽然对肿瘤细胞有相当强的杀伤作用,但作为“弹头”物质仍需用十几个或数十个药物分子去连接一个抗体分子,以求加强偶联物的活性。近年发现一些对肿瘤细胞有极强杀伤作用的抗肿瘤抗生素如卡里奇霉素(calicheamicin,CLM)和力达霉素(lidamycin,LDM),可为研制小型化、高效化抗体药物提供新的“弹头”物质[21,22]。

在线客服